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ABSTRACT: The successful application of machine learning (ML) in catalyst
design has been made difficult by the challenges associated with collecting high-
quality and diverse data. Due to the complex interactions between catalyst
components, the design of novel catalysts has long relied on trial-and-error, a
costly and labor-intensive process that results in scarce data that is heavily
biased toward undesired, low-yield catalysts. Such data presents a challenge for
training ML models that generalize well to novel compositions, which is
necessary for the success of ML-guided catalyst discovery. Despite the growing
popularity of ML applications in this field, most efforts so far have not focused
on dealing with the challenges presented by such experimental data. In this
work, we introduce a robust ML and explainable artificial intelligence (XAI)
framework that incorporates a series of well-established ML methods designed
to improve model performance and provide reliable evaluations for catalytic
yield classification in the context of scarce and class-imbalanced data. We apply this framework to classify the yields of different
catalyst combinations in the oxidative coupling of methane reaction and use it to evaluate the performance of a range of ML models:
tree-based models (such as decision trees, random forest, and gradient boosted trees), logistic regression, support vector machines,
and neural networks. Our experiments demonstrate that the methods used in our framework lead to more robust performance
estimates and reduce the effect of class imbalance on model training, resulting in significant improvements in the predictive
capability of all but one of the evaluated models. Additionally, the XAI component of the framework analyzes the decision-making
process of each ML model by identifying the most important features for predicting catalyst performance. Our analysis found that
XAI methods that provide class-aware explanations, such as Layer-wise Relevance Propagation, managed to identify key components
that contribute specifically to high-yield catalysts. These findings align with chemical intuition and existing literature, reinforcing
their validity. We believe this framework can serve as a blueprint and a set of best practices for ML applications in catalysis, driving
future research while delivering robust models and actionable insights that can assist chemists in designing and discovering novel
catalysts with superior performance.

H INTRODUCTION efforts in data acquisition and curation,'®™2° data sets often
remain small and limited due to the high costs in labor and
time. Additionally, the choice of catalysts, elements and
supports can cause certain types of biases to manifest in the
data in two key ways. First, existing data often favors

Machine learning (ML) models have recently become popular
in the field of heterogeneous catalyst design.'~'* The inherent
complexity of the interactions between catalyst components is

very high, leading to both synergistic and antagonistic effects

. . o 21-23 :
on catalyst yield that are difficult to disentangle. Therefore, the historically ] schessful or Aeasﬂy testable catalysts. This
discovery of well-performing catalysts has long relied on leads to a bias in the selection of elements and compounds and
serendipitous trial and error. "> can lead to an over-representation of certain components, most

Unlike traditional methods based on simplified models and commonly e.Iements an.d supports that have historically been
heuristics, ML methods excel at identifying complex patterns more accessible for testing and have been a part of successful
and nonlinear relationships between various catalyst compo-
nents. This capability is particularly advantageous in catalyst Received: August 7, 2024
design, where ML can offer insights into nuanced component Revised: ~ November 18, 2024
interactions, crucial for optimizing yield."’™"* However, the Accepted:  November 18, 2024
application of ML methods in catalyst design faces several Published: December 6, 2024
challenges, with the most prominent challenge being the
scarcity of large and unbiased data sets. Despite significant
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catalysts. However, such elements and supports only occupy a
very narrow spectrum of all possible compounds, leaving many
other elements and supports underrepresented or not
represented at all in the data.** This type of bias is difficult
to address with machine learning, since a large part of the
compound space is not present in the training data, making it
impossible for machine learning models to extrapolate and
learn the interactions between the elements and supports that
are not represented, regardless of the size of the data set.
However, this bias in the selection of elements and supports
can be addressed when curating the data set itself, as shown by
the effort in Nguyen et al,,'® where the bias in the selection of
catalyst components was addressed by explicitly performing a
randomized and unbiased selection of elements and supports.

Nevertheless, data sets with a more unbiased selection of
elements and supports can often lead to a second type of bias
in the data, this time in terms of the representation of low- and
high-yield catalysts. Due to the complexity of the interactions
between catalyst components, a randomized unbiased selection
of catalyst components is much more likely to result in a low-
yield catalyst, making high-yield catalysts inherently much rarer
and underrepresented. This highlights a fundamental chal-
lenge: while an unbiased data set might provide a broader
exploration of the compound space, it often includes many
suboptimal catalysts. In our scenario, this results in an
imbalance in the two class labels, which can pose a challenge
when training and evaluating machine learning models.
Despite this, these problems can be mitigated by appropriate
use of machine learning techniques, which is precisely one of
the focal points of this work.

To tackle these challenges, we propose a robust ML and
explainable Al (XAI) framework designed to handle the
scarcity and imbalance of experimental catalyst data (see
Figure 2). The primary goal of this framework is to offer a
conceptual blueprint aimed at establishing best practices for
robust evaluation and analysis of machine learning models,
particularly when working with such challenging experimental
data sets.

The framework is composed on a series of ML methods that
are commonly used for dealing with scarce and imbalanced
data, such as nested cross-validation, stratified sampling,
resampling, and various XAI methods, all combined into a
unified workflow. Nested-cross validation is used to obtain
robust performance estimates despite the variability inherent
when working with small data sets, while the sampling
methods mitigate biases and the impacts of over-represented
classes during training. Additionally, we utilize the F1-score, a
performance measure that is uniquely well-suited to our
problem setting, which is crucial for correctly evaluating the
predictive capability of any model.

Building on this foundation, this study further contributes to
ML-guided catalyst design by applying our framework on an
unbiased data set for the oxidative methane coupling (OCM)
reaction, which includes a diverse selection of elements and
supports, introduced by Nguyen et al.'® To systematically
assess the effectiveness of our framework, we use it to train and
evaluate a variety of ML models on the aforementioned OCM
data set, and document the changes in performance resulting
from the various framework components.

Recognizing the necessity for model interpretability in
catalysis, we also apply XAI methods™ ™" to analyze strongly
nonlinear models, such as neural networks and support vector
machines (SVM), identifying key features that influence their

decisions and providing insights into their decision-making
processes. This enables us to determine which -catalyst
components have the strongest contribution toward the
model’s prediction. This information enables us to develop a
generative model designed to predict potential high-yield
catalyst candidates.

In summary, this work proposes more robust performance
metrics and sampling strategies, explores a diverse set of ML
models, and applies XAI methods to analyze their decisions,
and disentangle contributions of each component to high-yield
catalysts. We aim to pave the way for effective ML-guided
catalyst design under data scarcity, providing a blueprint and
best practices that can improve future ML efforts for more
efficient experimental design and accelerate catalyst discovery.

B MATERIALS AND METHODS

Data. Under the effects of certain catalysts, OCM converts
methane to C, products, e.g, C,H, and C,H,, which serve as
the fundamental building blocks in the chemical industry.
Thus, the effectiveness of a catalyst is often measured by the
percentage of C, yield. Researchers have applied catalyst
informatics to OCM, using data analysis and ML methods to
identify synergistic combinations like Na—La, Na—Mn, and
Ba—Sr.'® Current challenges include inconsistent experimental
methods and biases in component choices among different
publications.””*"

To address these challenges, Nguyen et al.'® have gathered
unbiased and process-consistent OCM data via a high-
throughput screening (HTS) instrument for 300 quaternary
structured catalysts, with each component being randomly
selected from a predefined range of candidates. The quaternary
structure of the catalyst, M1-M2-M3/support, consists of three
active elements (M1-M2-M3) randomly selected from 28
commonly used elements (including “none” as an option) with
replacement, and one support randomly selected from 9
oxides. To ensure unbiased selection, 300 combinations are
randomly chosen as candidate catalysts from all possible
combinations. Evaluation experiments for each candidate
catalyst under 135 different reaction conditions are then
performed via HTS. Specifically, one combination of temper-
ature, input ratios, total flow, and atmospheric pressure defines
one reaction condition. Only the data of one reaction
condition with the highest C, yield is recorded for each
candidate catalyst. Apart from C, yield, another two quantities
CH, conversion and C, selectivity are recorded. CH,
conversion measures how much of the input methane is
converted. C, selectivity measures how much of the output is
the desired output, ie., C, products. Thus, the product of CH,
conversion and C, selectivity equals C, yield, which also
indicates the conversion-selectivity trade-off. There are, in
total, 291 records for individual catalysts in the data set, since
the performance scores of 9 catalysts are missing. Nguyen et
al.'® provides informative interpretations from a chemical
perspective based on the statistical analysis of the experimental
data.

To facilitate the efficient discovery of combinatorial
catalysts, Nguyen et al.'® have prepared the data with an
unbiased selection of elements, making it potentially beneficial
for ML applications. The target variable is set as the best C,
yield, which is a binary variable that is set as true if the yield is
larger than 13% and false when the yield is lower. The data set
consists of 51 high-yield catalysts and 240 low-yield catalysts in
total. The data consists of 49 Boolean features denoting the
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presence of elements (27), supports (9), and periodic table
groups (13) in a given catalyst combination. Due to its diverse
and bias-free construction, we chose to use this data set as an
example for our proposed framework for training, evaluation,
and explainable AL

While we strongly appreciate the efforts of Nguyen et al.'® in
curating this unbiased data set and making it publicly available,
it is essential to highlight certain characteristics and potential
issues of this data to provide context for our analysis.

First, we have found that the features denoting whether an
element belongs to a specific group in the periodic system are
superfluous, as they do not seem to improve the overall
performance of the models when accounting for class
imbalance. Additionally, they make it more difficult to
disentangle feature importance attribution from explainability
methods since they correlate strongly with the elements
belonging to the group. This is especially the case with groups
3,5, 7,8 9, 11, and 12, which have only 1 element each,
respectively Y, V, Mn, Fe, Co, Cu, and Zn, resulting in the
corresponding features being fully correlated. We note that this
effect is specific to the current data set due to the sparse nature
of the feature representation and selection of elements. In the
case of larger and more diverse data sets, where a broader
range of elements are included, such main group information
may prove to be a very useful feature. A more detailed
discussion on this can be found in Supplementary Section
Effect of periodic table group features.

Finally, it is important to note that the data set only includes
the optimal operation conditions for the catalyst material. As a
consequence, the test conditions, such as temperature and Gas
Hourly Space Velocity, serve as identifiers for each data
instance rather than features that can be used for training and
analysis. Additionally, Nguyen et al.'® highlight the process
sensitivity of the OCM reaction, indicating that test conditions
may have a more profound impact on catalyst performance
than changes in material composition.

In supervised ML, the overarching goal is to develop models
that generalize well to unseen data. However, the exclusive use
of optimal test conditions within the data set poses a challenge
to the model’s generalization ability. By training solely on data
characterized by optimal process conditions, the models may
struggle to accurately predict the target variable for unseen
cases subject to different sets of process conditions.

However, this does not invalidate the approach of focusing
on the best yield of a catalyst composition given a set of
processes condition. For instance, if the yield of a particular
combination remains below the desired threshold and is
classified as low, it discourages further testing, as the potential
for success is limited. On the other hand, if the predicted yield
falls within the high-yield category, conducting a series of tests
under varying process conditions can help identify the optimal
conditions for achieving the desired yield. This method still
offers significant cost savings compared to trial-and-error-based
high-throughput screening, since only a limited set of
promising compositions need to be tested. The reduction in
cost would be very similar to that of models trained on data
with specific process conditions, since experimental validation
remains necessary to confirm whether the predicted optimal
conditions for each candidate composition hold true in
practice.

Performance Evaluation Metrics. Among the various
measures used to evaluate the performance of ML models, this
study focuses on accuracy, precision, recall, and Fl-score.

These metrics measure different aspects of model performance,
each suited to different objectives and contexts. The equations
for all the measures we use in this work are shown in Table 1,
and an illustration comparing the relationships between the
performance measures can be found in Figure 1.

Table 1. Definition of Different Commonly Used
Performance Evaluation Metrics for ML Models“

TP + TN TP

Accuracy = o NN Precision = ———
CCUrACY = T+ FP+ TN + N €cisio o

Recall = =% F1 = . PrecisionRecall

TP + FN Precision + Recall

“TP denotes the number of true positives, TN that of true negatives,
FP denotes the number of false positives, and FN the number of false
negatives.

Accuracy is one of the most widely used evaluation metrics
for ML models, which measures the proportion of correct
predictions, encompassing both true positives and true
negatives in a single metric. It is particularly suitable for
balanced data sets, where the number of samples in each class
is roughly equal. In the case of highly unbalanced class ratios,
accuracy can be misleading since a classifier only predicting the
majority class would still be able to achieve high accuracy.

To overcome this shortcoming, other evaluation measures
have been introduced that better reflect the different aspects of
the problem. In the case of catalyst design, we are more
interested in one of the two classes, namely high-yield catalysts.
This is why the measures precision, recall and Fl-score are
especially relevant here. Precision measures the proportion of
true positive predictions among all positive predictions and is
valuable when the cost of false positives is high. Recall, also
known as sensitivity or true positive rate, gauges the ability of
the model to capture all positive samples and is crucial when
the cost of false negatives is a concern. It is defined as the ratio
of true positives to the sum of true positives and false
negatives. Finally, the Fl-score is the harmonic mean of
precision and recall and is particularly useful when the class
ratios are imbalanced, and the positive class is especially
important, which is the case in our catalyst yield classification
task.

Resampling. ML models often struggle within scenarios
with highly imbalanced class distributions.””** Because most
ML models are designed for data sets with an equal number of
observations for each class, if the imbalance is not accounted
for, the models may prioritize the majority class and overlook
the minority class, negatively impacting overall performance.

One common approach to addressing this issue is by
employing resampling techniques, which use various strategies
to oversample the minority class or undersample the majority
class in order to balance the data set.”* ~*

We choose to perform oversampling using Synthetic
Minority Oversampling Technique (SMOTE),** and following
the recommendation of Chawla et al.** we combine SMOTE
with random undersampling of the majority class. We opted
for SMOTE because it is a robust and well-established method
that has been effectively used for many years, demonstrating
consistent performance advantages over alternative resampling
techniques. Its ability to generate synthetic samples helps
improve model generalization without the risks associated with
simple duplication or excessive reduction of the majority class.

Cross-Validation. When dealing with small data sets, the
performance of the model can depend quite strongly on the

https://doi.org/10.1021/acs.jpcc.4c05332
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Figure 1. Illustration of evaluation metrics—the blurred symbol is the model’s prediction, and the unblurred symbol is the true label of the data.

choice of the training and test subsets, making it difficult to
obtain a reliable estimate of the model’s generalization error. In
such cases, providing an accurate and unbiased estimate of the
error through cross-validation (CV) and hyper-parameter
tuning becomes essential, which in turn allows for the selection
of the most robust and best-performing model.”"**

In our study, we use a variant of nested k-fold cross-
validation to reliably evaluate model performance on unseen
data.*** In k-fold cross-validation, the data set is divided into
k-subsets of roughly equal size, one of which is chosen as the
validation set, another one as the test set, and the rest are
combined into the training set. The model is then trained using
the training set, while the validation set is used to select the
best-performing set of hyperparameters during training.
Finally, the test set is used to evaluate the model’s predictive
power on unseen data. This procedure is then performed for
different allocations of the subsets to the training, validation,
and test data sets. Nested k-fold cross-validation improves
robustness by creating multiple different random splits of the
data set into k subsets, and performing the whole process of k-
fold cross-validation multiple times. Using this procedure, we
ensure that each data point is represented in the train,
validation, and test set in different splits, preventing overfitting
and ensuring unbiased performance evaluation that is not
dependent on the initial partitioning of the data.

Machine Learning Models. To showcase the general
nature of our framework and provide a broad overview of the
diverse approaches in machine learning, we evaluate a variety
of ML models commonly used in classification tasks.

This includes a series of models from the family of tree-
based models such as decision trees (with both prepruning and
postpruning), as well as random forests and gradient boosted
trees, which are ensembles constructed of many individual
decision trees. We also include logistic regression, one of the
oldest and most popular methods for binary classification.

Finally, we evaluate SVMs and neural networks, two
powerful and highly nonlinear ML methods. Detailed
explanations of these models can be found in Supplementary
Section Machine learning models theory.

Explainable Al. Explainable AI (XAI) techniques are
playing an increasingly imgortant role in various domains,
including catalyst research.”® While there are many approaches
to explaining the ML model’s decisions, in this paper, we focus
on XAI methods that assign importance to each input feature
based on how relevant they were to the model’s prediction.””
In the catalyst design scenario explored here, such XAI
methods would point out which components contribute
particularly strongly to a catalyst being classified as either
high- or low-yield. Considering the black-box nature of
machine learning models, by implementing XAI techniques,
we can discern whether the model is focusing on chemically
relevant features rather than artifacts. This helps to prevent
issues like the “Clever Hans” effect,”* enhancing the model’s
transparency and interpretability. In the ideal case, these
techniques can also uncover previously unknown relationships
between catalyst components, thereby guiding the exploration
of new catalysts and advancing the field.*” However, we would
once again like to note, that the main goal of XAI methods is
to bring better transparency and understanding of the decision
making of ML models, rather than uncovering new knowledge.

Feature Importance for Tree-Based Models. For the three
variants of decision trees, feature importance was determined
based on the mean decrease in impurity across all decision
nodes. This metric quantifies the contribution of each input
feature to reducing impurity when splitting the data along this
feature during the training process,” commonly measured by
the Gini index or entropy.

]
Gini(t) =1 - ). p’ "

where ] is the total number of classes in the data set, and p;
represents the proportion of samples belonging to class i at
node t.

In this case, since the decision tree models were trained
using the Gini index, we also use this as the measure of feature
importance. Higher importance scores indicate a greater
impact on impurity reduction, highlighting the significance of
these features in the classification process. For the random
forest models, feature importance is determined by aggregating

https://doi.org/10.1021/acs.jpcc.4c05332
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the reduction in Gini impurity achieved by splitting each
feature across all trees within the ensemble:

T S,

1 t
FlLip(x,) = T Z Z AImpurityt’S(xd) .
t s 2

Here, x, is the d-th feature of the input vector x, T is the total
number of trees in the random forest, S; is the number of splits
in tree t, and Almpurity, (x,) is the decrease in Gini im4purity
attributable after split s in tree t, if feature x; was used.”

In eXtreme Gradient Boosting (XGBoost), a feature’s
importance increases with its contribution to splits during
tree construction and is calculated by summing the gain (see
Supplementary Section XGBoost models) of each specific
feature across all trees and splits:

S

E IXGB(Xd) = z Gains(xd)
s 3)

where x; once again refers to the feature d in the input x, S is
the total number of splits across all trees, and Gain(x,) is the
gain resulting after split s, if feature x; was used for this split.

Layer-Wise Relevance Propagation (LRP). LRP is a popular
explaining technique for interpreting predictions of complex
neural network models in terms of latent and input
features.”>***® In contrast to feature importances for tree-
based models, which primarily explain the parameters of the
model itself, LRP produces local explanations for the
classification of each sample. Using so-called propagation
rules,”” LRP assigns a relevance value to each neuron by
iteratively backpropagating the model output through the
network layers until the input layer is reached. Propagation
rules are chosen to be conservative, meaning that total
relevance in each layer is equivalent to the network output.
In general, most LRP rules compute lower-layer relevance R;
given upper-layer relevance R; using the following generic
format:

k=3

J

p(Wij) a4
J
2o P(wy)-a; + € (4)

In the above formulation, the sum Z}. runs over upper-layer
neurons {a;};, whereas the sum Y . runs over lower-layer
:

neurons {4/}, including the bias represented as the additional
neuron ;. The variable w;; describes the weight connecting the
lower-layer neuron activation 4; and the upper-layer neuron g,
while p describes some functional dependence of the neuron
weights. To avoid division by zero, most LRP rules stabilize the
above denominator adding a small positive value €. As
exemplified by the above formula, most propagation rules
distribute relevance depending on how much each lower-layer
neuron has contributed to the output of the higher-layer
neuron. Contrary to feature importance explanations, LRP
relevance values can be either positive or negative, thus
describing how much a given feature attributed to the model
deciding in favor of one class or the other.

To start relevance propagation, a suitable neuron output
must be chosen to set upper-layer relevance. One possible set
of explained neurons is the neurons in front of the final softmax
layer, which aggregate evidence for a given class. The upper-
layer evidence neurons form a linear layer and compute
activations for a given class ¢ as follows:

a = Z Wk %%
0,k (%)

However, as it has been found that explaining only one class-
evidence neuron does not contextualize evidence of competing
classes, an alternate approach is to explain the logit of class
probabilities instead.’” This quantity is expressed as follows:

_ log(p)
log(1 - p) (6)

e

In a two-class setting with class indices 1 and —1, this further
simplifies as follows:

n=a —-a, (7)

Combining the evidence weight vectors,  can then be
expressed as the following explainable neuron:

m= Z (W1,k - W—1,k)'“k

0,k (8)

This neuron # can then finally be used as the starting point of
the relevance propagation procedure for the classifier. To
explain subsequent Multi-Layer Perceptron (MLP) layers, we
applied the y-rule, which sets the functional dependence p(w;)
=w; +7 - max (o, w,-]-) given a value of 7, that we set to 0.2. The
y-rule emphasizes positive contributions to neuron outputs,
which has been shown to improve the stability and faithfulness
of the resulting explanation.”

While the LRP rules conserve relevance, some relevance in
each layer gets assigned to neuron bias terms, which cannot be
explained in terms of input features. Consequently, the
relevance assigned to the input does not perfectly match the
class evidence of the prediction. To account for the relevance
lost to the biases and improve the interpretability of the
relevances assigned to the input, we rescale the input feature
relevance values {R}, such that positive relevance adds up to
the positive-class evidence and vice versa.

The rescaling is done using sign-dependent factors p* and
p~, which are determined based on the positive and negative
contributions to the output neuron #,. More specifically, for
each sample, the positive input relevances are scaled such that
their sum is equal to the positive contributions to 7, and vice
versa for the negative relevance:

Z p*-max(R;, 0) Z max((w; , — w_; ;)-a, 0)
d

0,k )
Z p~-min(Ry, 0) = Z min((wy . — w_y ) a, 0)
d 0,k (10)

This rescaling strategy ensures that the relevance in the
inputs conserves the value of the output neuron #, in a way
that preserves the original sign of the input relevances.

LRP for Neuralized SVMs. By default, LRP requires a neural
network structure and is, without further modification, not
suited to explain kernel-based models. To overcome this
limitation and provide faithful explanations with LRP,
Kauffmann et al.>' introduced the concept of neuralization.
Neuralization transforms a kernel-based model into a neural
network structure producing equivalent decisions explainable
with propagation-based XAI methods.

In the case of RBF-SVMs, Bley et al.”> modified the SVM
predictive function f(x) of eq 10 in the following way:

https://doi.org/10.1021/acs.jpcc.4c05332
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then repeated for 100 different train-test splits, and the results are aggregated to produce robust performance estimates and feature importance

scores.

g(x) = logl )" a; exp(—y-lIx — x,|I*)

~ log| D lat) exp(—y-}x — X"HZ)
- (11)

Here, the index i runs over positive-class support vectors and j
over the negative-class support vectors. Therefore, x; and x;
describe the support vectors themselves, and @; and q; are the
associated dual coeflicients of the SVM. The two logarithmic
terms can be interpreted as evidence for the two competing
classes. The transformed classifier g(x) is guaranteed to
produce an equivalent classification to the original SVM. The
authors went on and transformed g(x) into the following
neural network structure:

g(x) y-mjny(mgxy(w;-x + b))

] 1

where w; 2-(x; — x]-),

j (12)
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The above formulation utilizes the soft-min and soft-max
pooling-layer definitions of Kauffmann et al.>* where min’(-) is

defined as —%logZexp(—y-(-)), and max’(-) is defined as
%logZexp(}hC)). Thus, the neuralized RBF-SVM can be

summarized as two pooling layers preceded by one detection
layer with one detection neuron for each pair ij of positive-class
and negative-class support vectors.

To propagate relevance through the first two pooling layers,
we follow the approach of Kauffmann et al.>' Based on the
concept of Deep Taylor Decomposition,” the authors derived
the following conservative propagation rules for the soft-min
and soft-max layers:

P (o
! Zj’ eXP(_aj’) (13)
eXP(ﬂi,-)
T Xoewlay) (14)

To propagate through the linear layer and produce input
feature relevance values {R,}4, we use the LRP-0 rule, which
attributes relevance according to the element-wise product of
the neuron weights and input features:

https://doi.org/10.1021/acs.jpcc.4c05332
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respective distribution.

Wi, d X4

Rd ‘R

Zo,df Wi, a " Xg

(18)

During this propagation, however, relevance is naturally lost in
the linear layer to the biases. To compensate for lost relevance
and ensure interpretability, we reweight relevance such that
positive and negative relevance add up to the original class
evidence of the explained model in eq 11. In particular, we
identify sign-dependent reweighting factors p* and p~ to
rescale feature relevance such that the following relations hold:

Z p*-max(Ry, 0) = log Z a; exp(—7-[Ix — x,|*)
d i

(16)

Y o -min(R,, 0) = ~logl 3" exp(~r-|}x - x)
d j

(17)

B RESULTS AND DISCUSSION

To ensure the reliability and best practices for evaluating ML
methods in catalyst design, we elaborate on our proposed ML
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framework tailored for data sets characterized by small-scale
and class imbalances. This section provides an overview of the
framework’s architecture and its application to various ML
models. We then assess the impact of different framework
components (e.g,, performance measures, resampling techni-
ques) on model performance. Finally, we leverage XAI
techniques to analyze the most relevant features identified by
each model and investigate common features across models to
gain an understanding of the underlying data. All of the
following experiments were conducted on a MacBook Pro with
an M1 chip and 36 GB of RAM. The code for our framework
and the experiments in this section is available at https://
github.com/PSemnani/XAI4CatalyticYield.

Evaluation Framework. In this section, we will describe
the ML framework tailored to address the challenges posed by
limited and unbalanced data, illustrated on Figure 2.

We begin with data acquisition, followed by data cleaning
and preprocessing steps to refine the data set for further
analysis. During the training process, we use stratified sampling
to ensure equal representation of all classes across the training
and test sets. This is followed by targeted resampling within
the training set, addressing the significant imbalance within our
data set of 291 samples, where only S1 are positive.
Considering the 80—20 train-test split, this leads to about

https://doi.org/10.1021/acs.jpcc.4c05332
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230 training samples, with approximately 41 positives initially.
In order to balance the data set for training, we apply
SMOTE" with an oversampling ratio of 0.6 for the minority
class. This increases the number of positive samples in the
training set after resampling to approximately 60% of the
majority class, resulting in about 115 positives. The following
undersampling (ratio 1) maintains the total number of samples
intact. SMOTE generates new and unique samples by mixing
neighboring samples of the minority class, ensuring each is
slightly altered and distinct.

The model training process incorporates k-fold cross-
validation with k = S for hyperparameter tuning, designed to
improve the predictive accuracy and generalizability of our
machine learning models. Hyperparameter tuning is performed
with Bayesian optimization using Gaussian processes, where
the optimization is conducted over a range of reasonable
parameters, which are detailed in the Supplementary Section
ML models training and feature importance scores results. This
comprehensive approach ensures a robust evaluation of model
performance across diverse parameter settings. Since we chose
a more constrained set of hyperparameters for the neural
network models, we do a grid search across all combinations of
hyperparameters instead of Bayesian optimization. We evaluate
each model’s performance based on accuracy and Fl-score
metrics. Furthermore, we assess the importance of different
features in the data set via XAl techniques.

To mitigate potential biases due to limited data (291 data
points) and variability in the train-test splits, we perform the
random splitting of the train and test set and subsequent steps
of resampling and evaluation 100 times (steps 3 to 6). The
cross-validation is then performed by splitting the training set
into subsets. This ensures that the models are trained and
evaluated with no information leakage from the test samples.

The process results in a nested k-fold cross-validation,
providing reliable model performance estimates through
averaging. This ensures better generalizability of our results
under small, imbalanced data sets.

Robust Performance Estimation. In Nguyen et al,'* a
decision tree model was created using a single train-test split.
However, when we tried to replicate this model using an
alternative split, we found the model’s performance scores
were highly inconsistent. This inconsistency is demonstrated
by the wide range of accuracy scores across 100 different splits
and random states, as shown in Figure 3a. The accuracy score
of the single decision tree model in Nguyen et al.'® was 0.78,
which is very close to the mean of the distribution in the figure,
with a value of 0.77.

These variations can be attributed to several factors. First,
the randomness inherent in data-splitting results in different
subsets being used for training and testing. The sensitivity of
decision trees to the training data distribution can, therefore,
create inconsistencies in model performance due to these
variations in the training set, which are especially high for
smaller data sets. In addition, decision tree algorithms often
incorporate random initialization of parameters such as feature
selection and node splitting thresholds, resulting in different
trees being generated at each training iteration, further
amplifying the variance of the model’s performance.

When dealing with imbalanced data sets, we argue strongly
against the reliance on accuracy as the primary performance
metric for ML classifiers, due to the susceptibility to
misinterpretation of the accuracy scores. When one class
significantly outweighs the others, accuracy tends to be
skewed, favoring models that simply predict the dominant
class. This phenomenon is evident in our data set, where
among 291 data points, only S1 are labeled as positive
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catalysts. Consequently, if a model consistently labels catalysts
as negative, its accuracy would approximate the frequency of
the dominant class, yielding a high but misleading accuracy
score of 0.82. Our aim in catalyst material discovery extends
beyond recognizing prevalent classes to accurately predicting
out-of-distribution samples or classes with fewer samples. The
F1-score, by considering both precision and recall and focusing
mainly on the positive class, offers a better estimate of a
model’s performance in imbalanced catalyst design scenarios.

An interesting observation emerges from the comparison
between accuracy and Fl-score in Figure 3a: while accuracy
appears to be satisfactory, F1-score shows a much wider range
with lower values. This gap suggests a notable weakness in the
model’s predictive capacity, particularly for high-yield catalysts.

By using more stable data splitting methods such as stratified
sampling and ensuring class balance via resampling strategies,
our proposed framework aims to reduce variability and thus
improve the reliability of the estimated performance of
decision tree-based predictive models. This effect is supported
by the fact that the new framework produced a narrower
spread of performance metrics, as seen in Figure 3c, indicating
a more consistent and robust training process.

The analysis so far has included the features from the
periodic system groups introduced in Nguyen et al.'® in order
to make the comparison fair. However, as we mentioned in
Subsection Data, we found that these group features do not
contribute to the performance of the model. As seen in Figure
3¢,d, the exclusion of the periodic table group features does not
result in any significant change in the distribution of
performance scores. Because of this and the issue of
explainability as outlined in Supplementary Section Effect of
periodic table group features, from here on, we will only report
results using the data set without the periodic table group
features, i.e., using only information about which elements and
supports were present in the catalyst.

Evaluating Other Machine Learning Models. Based on
the findings of the previous section, the appropriateness of the
decision tree model for our data set comes under question,
prompting us to explore alternative modeling approaches. We
first turn our attention to other tree-based techniques such as
pre- and postpruned decision trees, random forest, and
XGBoost. To cover a more diverse range of ML approaches,
we extended our analysis to nontree models such as logistic
regression, SVMs, and neural networks.

Performance Evaluation. Following the suggested frame-
work, the performance metrics of all models are calculated and
displayed in Figure 4 and Table 2. The mean value of accuracy
across various models lies between the small range of 0.73 to
0.81. The best-performing model is the postpruned decision
tree, with an accuracy of 0.81. However, as we discussed in the
previous section, due to the imbalanced ratio of both classes in
the OCM data set, a model classifying all catalyst samples as
only having negative performance would have an accuracy of
0.82, demonstrating how misleading using accuracy is as a
measure of performance in this case.

A look at the Fl-score on the other hand, which takes the
under-representation of the high-yield catalysts into account,
paints a different picture. For reference, given the data set’s
class ratio, the Fl-score of a random classifier would be 0.26, a
classifier predicting only negative performing catalysts would
have an Fl-score of 0.0, while a classifier predicting only the
positive class would yield an F1-score of 0.3. With this in mind,
the results in Table 2 demonstrate that all the models have

Table 2. Model Performance Evaluation Results
Implemented through the Suggested ML Framework”

Accuracy Accuracy F1 F1

Model Mean Std Mean Std

Decision Tree 0.75 0.05 0.46 0.10
Decision Tree Prepruned 0.73 0.06 0.47 0.08
Decision Tree Postpruned 0.81 0.04 0.50 0.13
Random Forest 0.78 0.05 0.52 0.09
XGBoost 0.77 0.05 0.51 0.09
Logistic Regression 0.78 0.05 0.51 0.10
SVM 0.77 0.05 0.49 0.09
Neural Networks 0.76 0.05 0.51 0.10

“The accuracy and Fl-score of each model are averaged over 100
training and test splits and compared, and their respective mean and
standard deviation are displayed here.

performed significantly better than the random classifier, with
Fl1-scores ranging from 0.46 to 0.52. Given that this difference
in performance was impossible to recognize based on the
accuracy, we can conclude that in the context of imbalanced
classes, the F1-score is much more informative as a measure of
the model’s performance compared to accuracy.

It is important to emphasize that while the reported F1-score
range is significantly higher than that of a random classifier and
provides more information than accuracy, the various machine
learning models show fairly comparable performance, with
none distinctly outperforming the others. This can be mainly
attributed to the small size of the data set used for training. As
a result, the models exhibiting the best performance—after
thorough cross-validation and hyperparameter tuning—are
generally simpler in terms of their parameters and complexity.
This simplicity leads to more robust predictions and minimizes
the risk of overfitting, allowing the models to achieve
satisfactory validation and test errors. Consequently, the
models demonstrate similar quality given the current data set
conditions. These results reflect the data set’s characteristics
rather than the models” inherent capabilities. With a larger and
higher-quality experimental data set, we expect to see more
significant performance differences, especially among more
complex models like XGBoost, SVM, and neural networks,
which are likely to outperform simpler models such as decision
trees, random forests, and linear regression.

Impact of Resampling. To emphasize the benefits of our
suggested ML framework, we performed the same evaluation
procedure without the resampling step when preparing the
training data. Figure S illustrates the impact that resampling
has on the different performance metrics across all models. We
observe a minor drop in accuracy for all models, however, this
is of little importance since we already determined that
accuracy is not an appropriate performance measure in this
context.

On the other hand, the application of resampling during
training has significantly improved the Fl-score for all models
besides the SVM. The SVM in general is not strongly affected
by class imbalance since it relies only on a few samples as
support vectors, which usually lie on the edges of the class
distributions. A resampling method such as SMOTE that
generates artificial samples by mixing existing data points of the
same class is thus unlikely to generate any new samples on the
edge of the distribution. On the other hand, the random forest
has benefited the most from the introduction of resampling,
with its Fl-score increasing from 0.1 to 0.52.
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Figure S. Impact of introducing resampling techniques on key performance metrics: (a) accuracy, (b) Fl-score, (c) precision, and (d) recall.

The overall improvement in F1-score can be attributed to a
significant increase in recall across all models. This indicates
that resampling enables the models to better identify the
minority class of high-yield catalysts, which is the primary class
of interest in catalyst design. We also observe a small reduction
in precision for most of the models, revealing that the
proportion of false positives has slightly increased as a
consequence of the models classifying more catalyst
compositions as high-yield.

Given the substantial improvements in recall and F1-score,
we can confidently conclude that our machine learning
framework effectively enhances model performance and
reliability for catalyst yield classification.

Explaining the Decisions of ML Models. Despite the
challenges observed in accurately predicting catalyst yield, ML
models offer more than just predicting accuracy; they can serve
as valuable tools for analysis. In this section, we use the
previously trained ML models to explore the underlying factors
that drive catalyst performance. For this purpose, we apply a
range of XAI methods to identify the most influential features
for classifying a sample as “good” or “bad”. For each model
class, we conducted an aggregation procedure as described in
Subsection Evaluation Framework: For each of the 100
training-test splits, cross-validation was used to identify optimal
hyperparameters. These hyperparameters were then used to
train a single model on the combined train and validation set
for each specific split. The test data set was subsequently used
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to estimate the model’s generalization performance and
generate sample-specific explanations, if necessary. The
relevances assigned to all data points were averaged over the
number of splits to reduce the effect of model’s bias due to
specific subsets chosen for training. These aggregated results
help identify common patterns and key contributors to catalyst
performance, which can provide chemists with insights that can
guide future experimental strategies.

Feature Importance for Tree-Based Models. In order to
aggregate the importance score of features across all tree-based
models, we have first normalized these values between zero to
one and then took the mean of the importance score for each
feature:

S
R, =1 @)
R, = — R.,(m
y S;x ) -

where § is the number of training/test splits, Ry(m”) is the
feature importance for feature d extracted from the model m
trained on the training subset from split i. The results of the
feature importance aggregation are illustrated in Figure 6.
Manganese (Mn) was found to be the key feature in catalyst
yield prediction, followed by Aluminum Oxide (ALO;), Silicon
Dioxide (SiO,), Nickel (Ni) and Cerium Dioxide (CeO,).
Overall, the feature importance scores assigned across the
different tree-based models are very similar. As shown in
Figure 10, the correlation coefficients of the importance scores
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Figure 6. Averaged importance scores for all features across the
different tree-based models (decision tree, DT prepruned, DT
postpruned, random forest, XGBoost).

between the tree-based models are all over 0.94. Some part of
this high similarity of the feature importances may be explained
by the similarity of the explanation methods themselves since
the explanations of tree-based models are all based on the
reduction of impurity related to each feature. Another and
perhaps more significant reason for the similar explanations of
the tree-based models is that they all fundamentally use a
similar learning strategy of selecting features that reduce the
impurity in the leaf/decision nodes.

Explanations Using LRP. To produce explanations for
catalyst yield in SVMs, we performed the neuralization
procedure outlined in Section LRP for neuralized SVMs and
applied the propagation rules to obtain relevance scores for
each input feature of each test sample. To counteract relevance
lost to bias terms, we rescaled input relevance using our
rebalancing scheme described in eq 16.

Similarly to the SVM, neural network explanations are
obtained by applying LRP as outlined in Section Layer-wise
Relevance Propagation (LRP) to each test sample. Again, in
order to correct the relevance loss because of the model’s bias
parameters and maintain the conservation of relevance
between the input and output, we rescale the input relevance
as shown in eq 9.

LRP is an explanation method that inherently produces
individual explanations for each sample (for some examples of
single sample LRP explanations, see Supplementary Section
Single catalyst explanation with LRP). Therefore, to obtain
global feature importances based on the entire data set, it is
insufficient to aggregate across the different training/test splits
as in eq 18, the sample-based explanations within each split

also need to be aggregated. This aggregation procedure
remains the same for the LRP explanations of both the SVM
and neural network models. The rescaled feature relevances for
all test samples are averaged across each sample from each of
the 100 test splits:

S

o1 S 0]
Rd_S>i<NZZRd(Xj)

i=0 j=0 (19)

where S is the number of training/test splits, N is the number

of test samples per split, Rd(xgj)) is the relevance for input
teature d of the j-th sample in the test subset for split i.

We stress that LRP explanations yield both positive and
negative values, unlike tree-based feature importances, which
only produce positive relevance values. Due to our choice of
the evidence for the high-yield class as a starting point for the
LRP propagation, a positive relevance at the input indicates
that this feature contributes positively to the model’s
prediction of the high-yield class, while the features with
negative relevance contribute toward the model classifying the
catalyst as low-yield. In contrast, tree-based feature importan-
ces only indicate a feature’s overall importance without
specifying its relation to a particular class.

While aggregated LRP explanations using signed importance
scores provide more nuanced information about model
behavior, they are not directly comparable to strictly positive
tree-based explanations. To enable a direct comparison, we
also aggregate absolute LRP relevances across the different
samples and splits, providing purely positive feature
importances.

The resulting aggregated signed and absolute feature
importances for the SVM model can be seen in Figure 8,
while the analogous visualizations of the average feature
importances for the neural network model are shown in Figure
7.

For the neural network models, the highest absolute
relevance scores have been assigned to Nickel (Ni) and
Manganese (Mn) alongside alumina (ALO;) and silica (SiO,).
These components are, therefore, key features for the
classification of a catalyst as either high- or low-yield, according
to the neural network. Mn and Al,O; have also been identified
as top features by SVM models. However, they are preceded by
the supports La,0; BaO, which have been assigned even
higher importance scores.

Thanks to the property of LRP to assign positive and
negative relevances to features, the signed averaged LRP
importances provide a further dimension for analysis compared
to the absolute feature importances. We observe that all of the
top absolute contributors identified by both neural networks
and SVM have been the highest “negative” contributors to
classifying a catalyst as “high-yield”, namely Ni, Mn, and Al,O;,
while La,O; BaO and Eu are the key components for
classifying a catalyst as high-yield according to both the neural
network and SVM models.

Similarity of Explanations. The first thing to note about the
absolute feature importances across the tree-based models,
neural networks, and SVMs (Figures 6, 7a, and 8a) is that
Manganese (Mn) has been identified as one of the most critical
elements for determining the yield of a catalyst, accompanied
by the support material alumina (AL O;), which also has
universally high importance. Both of these components are the
only ones to appear among the top 5 components in terms of
absolute relevance across all three types of models.
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Figure 9 visualizes the average absolute feature importance
as well the standard deviation across ML models of different
types: SVM, neural networks, logistic regression, and random
forest, as a representative of the tree-based models. We find
that the top three key metals in determining the yield of a
catalyst are Manganese (Mn), Nickel (Ni), and Copper (Cu)
and the top three support materials are alumina (AL O;), silica
(Si0,) and cerium dioxide (Ce,O). Lanthana (La,O;) in
particular stands out as having a high standard deviation, owed
to the fact that logistic regression and tree based models assign
very low feature importance to La,O;, while it is absolute
feature importance for neural networks and especially SVMs is
much higher, because this two models specifically identify
La,0; as highly relevant to high-yield catalyst compositions.

Furthermore, we performed an analysis aimed at identifying
similarities and distinctions between the different models in
terms of feature importance. This was achieved by calculating
the Pearson correlation coefficients between the feature
importance scores of each pair of models via the Fisher-Z
transformation (for more details, refer to Supplementary
Section Fisher-Z transformation).

The results of this analysis are illustrated through the
correlation matrix in Figure 10, showing us that the feature
importance scores of most models are similar to one another.
This consistency among the different models and explanation
methods indicates that our evaluation framework produces
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reliable explanations that reflect some underlying phenomena
found in the data set. We also note that for SVMs and neural
networks, the correlation analysis was performed using the
absolute feature importances to make them directly com-
parable to the importance scores of the other models (Figures
7a and 8a). The correlation between the signed feature
importances for the SVM and neural network models is 0.90,
which is significantly higher than the absolute feature
importance correlation of 0.64.

Additionally, we observe that the SVM model’s importance
scores display the lowest similarity to those of the other ML
models. This is likely due to the interplay of two factors: the
behavior of RBF-based SVMs and the way the explanations are
constructed to reflect this behavior. Regarding the nature of
RBF-kernel methods, the inherent smoothness imposed by the
RBF kernel means that such methods are unable to perform
feature selection or weighting, as the influence of any feature
depends varies smoothly with the distance to the support
vectors. This necessarily causes more uniformly distributed
relevance scores, as irrelevant features cannot be discarded and
relevant features cannot be highlighted at prediction time.
Additionally, a unique property of SVMs is their sparseness,
causing their predictions to be sensitive only on the support
vectors of the model. Because the support vectors lie near the
decision boundary they can be interpreted as outliers of their
respective classes. Entropy-based models such as neural
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disentangling the class-specific contributions of the inputs.

network classifiers and decision trees instead derive their
parameters mainly based on inliers, i.e., samples that are highly
representative of their respective classes. This inherent
difference likely causes fundamentally different behavior at
prediction time which is also interlinked with how explanations
are acquired for SVMs. More specifically, the explanations
obtained for SVMs via LRP are based on the distance to the
support vectors of each class, which correctly reflects the
behavior of the model. Thus, the sparse and local nature of
SVMs along with the smooth nature of RBF kernel lead to a
lower similarity of absolute feature importances when
compared to other models.

Discussion of Component Contributions for High-
Yield Catalyst Design. The analysis in the previous sections
suggests that even if explanation methods produce only
positive importance scores irrespective of class, it still does
not necessarily follow that a component assigned with high
importance is beneficial for creating high-yield catalysts. In fact,
the component may be deemed important for classification not
because it leads to the high-yield catalyst, but because its
presence is likely to indicate a low-yield catalyst.

For example, none of the catalysts in the OCM data set that
included Ni as a component achieved a high yield. Similarly,
only one catalyst containing Mn and one containing Cu is
labeled as high-yield (out of 39 and 31 samples, respectively).
Therefore, Mn, Ni, and Cu are indeed key features for
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determining the yield of the catalyst within the context of this
data set because their presence makes it very likely for a
catalyst to be low-yield. This is also reflected in their high
absolute importance scores across all models (Figure 9), but
more importantly also in the strongly negative relevance for the
signed LRP explanations (see Figures 7b and 8b).

Despite all the above, these results do not necessarily
indicate that Manganese is a poor component for OCM
catalysis. The explanations provided do not reveal the absolute
truth but rather indicate that a specific feature strongly
influences the model’s classification of a sample as a low-yield
catalyst within this particular data set. In previous reviews on
OCM,>*** Manganese has been frequently cited as a favorable
component, often in combination with sodium (Na) and
supported by SiO, or MgO. However, the current data set'®
consists of 291 catalyst combinations that have been chosen
randomly, and not on the basis of previous knowledge, out of a
total of 36540 possible combinations. Considering this, it is
very likely that the optimal combination of Mn with specific
elements might be absent from the data set. Although the
highly negative relevance of Mn and other components does
not rule out the use of this component in producing high-yield
catalysts, it certainly indicates that the component in question
may have antagonistic effects when combined with other
random components, making it an unattractive candidate for
discovering novel high-yield catalysts.
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(error bars) between the models (SVM, neural networks, logistic
regression, and one tree-based model (random forest)).

Based on the signed LRP relevance scores, we identify two
groups of the contributors to low-yield catalysts: 1) acidic
supports, e.g., alumina (ALO;) or zirconia (ZrO,), and 2)
Highly oxidizing metal oxides, such as Pd, Cu, Nj, Fe, Co, Ce.
The supports in group 1) are shown to have a negative impact,
especially when they are not neutralized by strong alkali or
alkali-earth additives. We argue that this effect is caused by
strong adsorption of the ethylene molecule, which is a Lewis
base due to its double bond electron pair. This strong
adsorption leads to further oxidation toward carbon oxides.
The highly oxidizing elements in group 2) are capable of
activating oxygen to strongly oxidizing species that drive the
conversion of methane and/or the C, coupling products to
carbon oxides, reducing the yield of valuable C, products.

On the other hand, positive importance scores are assigned
to oxides (either as promoters or as supports) with a higher
degree of alkalinity (BaO, CaO). This effect may arise from the
improvement of ethylene desorption, which hinders its further
oxidation.

Another group of elements with positive relevance are rare
earth oxides, notably La and Eu. The catalytic activity of rare
earth oxides in OCM reaction has been well documented in
the literature,”* with La,0, being one of the best comyonents,
alongside Sm,0;, Gd,0; and Er,Os. Prior research®® shows
that the Lanthanide group plays a role in activating methane as

a methyl radical, which is the first step in the coupling of
methane to C, products. An exception to this is cerium oxide,
which has a negative contribution, because cerium, unlike
other rare earths studied here, has a reversible valence of
Ce4+/Ce3+, making it more oxidizing. This characteristic
likely drives the formation of carbon oxides (total oxidation).>®
Our findings of Lanthanum oxides’ positive contribution align
with the literature. Unfortunately, due to the random choice of
components, the other aforementioned rare earth elements are
missing from the current data set.

Our analysis in this section shows that the feature
importance scores assigned by our models can be related to
chemical phenomena and thus can be used to guide chemists
when designing novel high-yield catalysts.

Predicting Promising Catalyst Compositions via
Relevance Scores. To demonstrate how feature importances
can be used to generate new promising catalyst compositions,
we have devised a simple generative algorithm that uses the
relevances to bias the generation procedure toward catalysts
that the model predicts to be high-yield.

Our algorithm is based on the procedure used to generate
the data set in Nguyen et al.'® and ensures that every sample
generated is valid, ie., it could also be generated by their
random sampling procedure.

Let R, denote the average relevance for feature d calculated
over a given data set as described in eqs 18 or 19, depending
on the type of model and explanation method used. Using this
average relevance as an input, the generative algorithm first
splits the importance scores into one set for elements and one
for supports, after which the two sets of importance scores are
converted into discrete probabilities using the softmax
function:

e/h‘x

5 .

where f is a temperature parameter that can be used to control
the variability of the generated samples: a lower value for  will
result in a more uniform distribution, while a higher value will
produce a distribution where the most of the probability
concentrated the few components with highest relevances
scores. We also utilize two separate temperature parameters,

softmax(x, f3), =

where ¢ is used for generating the probability distribution of

the elements, while ° is used for the supports.

Based on the probability distributions obtained via softmax,
we first sample one support, then sample up to three elements
without repetition, each time removing the last sampled
element and recalculating the probabilities. Each time an

element is sampled, we also include a é chance of selecting no

elements, which allows our model to sample catalysts with two
and one components at the same rate as the sampling method
in.' A detailed step-by-step description can be found in
Algorithm 1.

Since the feature importances are not the ground truth, but
just reflect what the model determines as relevant for
prediction, the candidates selected by this procedure are not
guaranteed to be high-yield catalysts. However, we can verify
the effectiveness of the sampling procedure by feeding the
candidates generated with the feature importances back as
input into the model that produced these feature importances.
If the sampling procedure is effective, then the catalyst
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Algorithm 1: A simple sampling algorithm for generating promising catalyst com-
binations based on feature importances provided by an explainability method.
Data:
Ry - set of feature importances
& - feature indices of elements
S - feature indices of supports
3% - temperature parameter for the softmax applied on element relevances
3% - temperature parameter for the softmax applied on support relevances
Result:
5% feature index of sampled support
B, B3, B3 - feature indices of sampled elements

1 RS« {R;:d € S}; // Select importances of support features

2 pS « softmax(RS, 35); // Create probability distribution over supports
3 S*l ~ pS; // Sample from the probability distribution over supports
aforiinl...3do

5 Rf « {Ry:d€&E}; // Select importances of element features
¢ r ~ uniform(0, 1);

. 1

8

if r < 5] then // No element is selected with a chance of 1/|€|

| B« None;

else
9 // Sample element and remove it from the list of indices
10 p® « softmax(R¢, 3%);
11 B~ p®s

12 £ remove(F5);

candidates produced by this algorithm should be predom-
inately classified as high-yield catalysts.

We performed these experiments for two models with
different explanation methods: XGBoost using the impurity
metric and neural networks using LRP. For both models, we
took the average feature importances (absolute importances for
XGBoost and both absolute and signed importances for neural

networks) across 100 training/test splits and used them as
input into the sampling algorithm to generate 1000 samples
with different settings for the f parameters.

The results shown in Table 3 confirm our findings from
Section Explanations Using LRP, about the additional
usefulness of having explanations with class-aware feature
importances.

Namely, in the case of the signed feature importances from
the neural network, the proportion of generated samples
classified as high-yield grows continuously as we use the
temperature parameters to bias the sampling more and more
toward the high-relevant features. On the other hand, using the
absolute feature importances for both the neural network and
XGBoost model, we observe that further biasing the sampling
distribution toward features with high relevance only produces
an increasing number of low-yield catalysts.

Given that most of the features with high absolute
importances are also the ones with highly negative importances
(see Figures 6 and 7), meaning that they mainly contribute
relevance to the class of low-yield catalysts, the results in Table
3 offer further evidence about the reliability of the class-aware
LRP explanations.

To showcase the type of catalyst candidates that can be
produced by our algorithm, we include a list of 20 catalyst
candidates generated using signed-neural network relevances as
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Table 3. Fraction of Catalysts Generated by Our Relevance-
Based Sampling Procedure That Were Classified as High-
Yield by the Corresponding ML Model*"“

Temperature Feature importances
parameters NN: signed NN: abs. XGBoost: abs.
/15 =10, /jS =1 0.38 0.17 0.31
/;5 =20, /;S =2 0.49 0.13 0.23
/}8 = 40, /}3 =4 0.68 0.04 0.13
/js = 40, /15 =4 0.85 0.01 0.05

“The fractions are reported for the neural network (NN) and
XGBoost models, where for the neural network the samples are
generated using both the absolute feature importances (NN: abs.) and
the signed class-aware feature importances (NN: signed) obtained
using LRP. “The samples for XGBoost were generated using the
absolute feature importances as obtained from the XGBoost model.
“As the value of the beta parameters increases, we observe that the
fraction of samples classified as high-yield decreases when the absolute
feature importances are used, while they increase when using class-
aware signed feature importances, illustrating the impact of having
class-aware importances when using them to guide the development
of high-yield catalysts.

input in the Supplementary Section Promising catalyst
compositions obtained via XAl, along with some details on
the procedure used to generate them.

To summarize, the results in this section indicate that high
importance of an element or support in an ML model does not
necessarily imply that including this component will produce
high-yield catalysts. On the contrary, quite the opposite can be
true because a high relevance alone does not give us any
information about whether the feature in question predom-
inantly contributes to the desired class. Therefore, drawing
conclusions from feature importances requires using explan-
ation methods like LRP, which can disentangle the importance
and relationship of a feature to different classes.

B CONCLUSION

The field of catalyst design is characterized by complex
synergistic and antagonistic effects between catalyst compo-
nents. This often makes high-performing catalysts difficult to
discover through traditional trial-and-error methods. Machine
learning, with its capacity to detect underlying patterns and
complex relationships, offers great potential to accelerate
catalyst discovery by identifying novel, high-performance
candidates. Unfortunately, generating unbiased catalyst yield
data sets is a slow and resource intensive task, resulting in small
data sets where low-yield catalysts are much more dominanant
than high-yield ones, making it challenging to train ML models
that generalize well to high-yield outcomes.

To address the challenges posed by small, unbalanced data
sets, we introduced a robust machine learning and XAI
framework, incorporating resampling, cross-validation, and
well-suited performance measures, as well as XAI techniques
that help disentangle the positive and negative contributions of
components to catalyst yield. While we have chosen to apply
the framework to predicting the catalytic yield for the OCM
reaction as a representative example in this case, the general
design of the framework allows it to be applied for various
other catalytic reactions.

Our results demonstrated that the accuracy of the various
models, both with and without resampling, lies between 76 and
82%, which considering the class imbalance in the data sets, is

precisely within the range of a random classifier, thereby
providing misleading information about model performance.
However, using the Fl-score as a performance measure
revealed that models with similar accuracy can have
significantly different Fl-scores (0.1—0.52), allowing for the
identification of models who have learned to correctly
distinguish the minority class of high-yield catalysts. Having
this well-suited performance measure also demonstrated the
positive impact of resampling, resulting in an increase of the
Fl-scores by at least 0.1 across all models, with the random
forest model benefiting the most, with an increase of 0.42 in
Fl-score to reach 0.52. A notable exception to this is the SVM,
which by construction is not heavily impacted by class
imbalance or resampling. These findings underscore the
effectiveness of our machine learning framework in enhancing
model performance and reliability in catalyst yield classifica-
tion.

The application of various explainable AI techniques
consistently identified similar key components influencing
models’ decisions across different models. Notably, explan-
ations via Layer-wise Relevance Propagation (LRP) effectively
disentangled the positive and negative contributions of catalyst
components. Across both SVM and neural networks, LRP
explanations have highlighted the same two groups of
components are the top positive contributors to high-yield
catalysts: rare earth oxides (La and Eu) and alkaline earth
metals with high degree of alkalinity (Ba, and Ca) as top
features in driving high yield catalysts. These findings, aligning
with chemical intuition and existing OCM literature, are
notable given the small data set used. They further
demonstrate that explainable Al can already be used to extract
actionable insights from machine learning models, thereby
assisting the chemist in the design of experiments for faster
discovery of high-yield catalysts. As a proof of concept, we
developed a sampling algorithm based on relevance scores to
suggest promising catalyst compositions. The validation of this
algorithm using different ML models and XAI methods once
again demonstrated the importance of class-aware relevances
for enabling effective ML-guided catalyst discovery.

Future research could focus on generating larger catalyst
data sets that encompass diverse catalyst compositions under
various process conditions. With more complex data, achieving
optimal performance will require a future emphasis on
enhancing the models through feature engineering and/or
refining model architectures. Since our framework provided a
general improvement in performance across all evaluated
models, any improvements in model performance will be
complementary to the advantages offered by our proposed
framework, and together, these two approaches can be
combined to achieve the best possible results.

Although initially designed to address the challenges of small
data sets, the methods integrated into our framework will
remain valuable for training and evaluating models on larger
data sets. Given that unbiased catalyst data sets will still be
dominated by low-yield compositions, our framework’s focus
on handling imbalanced data through strategies like resampling
and metrics such as the F1-score, will continue to be crucial for
generating reliable results.

Finally, given its unification of robust evaluation practices
with interpretable explanations of complex machine learning
models, we hope that the ML and XAI framework introduced
in this work serve as a valuable blueprint for the community,
accelerating the catalyst discovery by implementing the
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appropriate and well-suited ML techniques tailored for
experimental data, while enhancing the reliability and trans-
parency of ML models through XAI. We believe that these
techniques will make future works more interpretable,
trustworthy, and impactful for catalyst design and beyond.
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